Comparison of methane concentrations observed from space with model simulation over Monsoon Asia

Sachiko Hayashida¹, Akiko Ono¹, Yosuke Niwa², Ryoichi Imasu³

1: Faculty of Science, Nara Women's University, Nara, JAPAN 2: Meteorological Research Institute (MRI), JMA, JAPAN

3: Atmospheric and Ocean Research Institute, Tokyo University, Tokyo, JAPAN

Introduction

The concentration of atmospheric methane (CH₄) has more than doubled since pre-industrial times, and its radiative forcing is estimated to be the second largest after carbon dioxide (CO₂). However, despite the importance of atmospheric CH₄ in global warming, the significance of individual sources of CH₄ remains highly uncertain. Monsoon Asia accommodates about 90% of the world's rice fields, and they have a big influence on the global environment. In this study, we analyze model simulation using NICAM-TM-CH4 and satellite data (SCIAMACHY and TANSO-FTS) to understand CH₄ behaviour over Monsoon Asia.

Datasets

\leftrightarrow CH₄ concentration

Sensor	Satellite	Reference	
SCIAMACHY	ENVISAT	Frankenberg et al.(2011)	
Sensor	Satellite	Version	

Emission inventory

Database	Emission category	Grid archived	Reference
Yan2009	Rice fields	0.5 [°] ×0.5 [°]	Yan et al.(2009)
GISS	All categories	1.0°×1.0°	Matthews et al.(1991

Satellite-derived indices

Terra

Database	Satellite	Grid archived	Reference
LSWC ^{*2}	Terra / Aqua	0.5 [°] ×0.5 [°]	Takeuchi and Gonzalez.(2009)

*1: National Institute for Environmental Studies *2: Land-surface water coverage

Fig. 1: Maps of 3-month averaged values of (a)SCIAMACHY, (b)LSWC, (c)NDVI.

(a)SCIAMACHY, (b)LSWC, (c)NDVI All data have been averaged for 6 years from 2003 through December 2008. The columns correspond to DJF, MAM, JJA, and SON, respectively.

DJF: from December to February MAM: from March to May JJA: from June to August SON: from September to November

*3: Normalized difference vegetation index

NICAM (Nonhydrostatic ICosahedral Atmospheric Model) - TM (Transport Model) Y. Niwa and R. Imasu

NICAM Model output

Scenarios of NICAM model run (after Master thesis of Takamizawa, Tokyo Univ, 2012)

Scenario name	Anthro- pogenic	Wetland	Biomass Burning	Rice	others
CTL 2.5 deg. x Meteorol	EDGAR3.2 2.5 deg, 40 ogical condit	GISS layers, mon tion in 2007	GISS thly averag (fixed)	Yan2009 e	GISS (termite)/ oceanic exchange/ mud volcanic emissions

Cluster analysis of the xCH₄ seasonality

In this study, we have observed the characteristics of seasonal variation in Asia by using the cluster analysis.

ミャンマー

We selected some sampling regions where the CH₄ emission values from rice fields

NICAM Simulation Upper Ganges (Area2-1)

Upwelling motion must have affected on enhancement of xCH₄ in August in the Ganges Basin. **GOSAT-TIR and ACE-**FTS data are now ndarinvartigation

Summary

We showed the characteristics of CH₄ distribution in Monsoon Asia. The seasonality of xCH₄ observed by SCIAMACHY is characterized by high values particularly during the wet seasons. High correlation coefficients (r) between xCH₄ and rice emission estimate is indicated, which suggests the strong connection between the atmospheric CH_4 concentration and the CH_4 emissions from rice cultivation for most of the areas in Monsoon Asia. The results obtained in this study demonstrate the potential of satellite observation at shortwavelength infrared (SWIR). However, it can provide information only for the column-averaged concentration, and vertical distribution is not detectable. Model simulation suggests CH₄ plumes in the upper troposphere over north

-10 -5 0 5 10 15 20 25 30 35 40 45 50 Latitude -10 -5 0 5 10 15 20 25 30 35 40 45 5 Latitude Latitude	India. Couples analysis of satellite and r	nodel simulations are now under study.	
[Acknowledgments]	[References]		
This research was supported by the Environment Research and Technology	Hayashida et al., 2013, Remote Sensing of Environment 139,246-256 .		
Development Fund of the Ministry of the Environmental, Japan(A1202)	Frankenberg, C., et al., 2011, Journal of Geophysical Research, 116, D04302.	Nara Women's University	
	Yan,X., et al., 2009, Global Biogeochem Cycles, 23, GB2002.		