[AS47-A002] Methane Concentration Over Monsoon Asia Observed from Space: **Comparison with Model Simulation**

Sachiko Hayashida¹, Akiko Ono¹, **Tomomi Nagase¹**, Yosuke Niwa², Ryoichi Imasu³

1: Faculty of Science, Nara Women's University, Nara, JAPAN 2: Meteorological Research Institute (MRI), JMA, JAPAN

3: Atmospheric and Ocean Research Institute, Tokyo University, Tokyo, JAPAN

Introduction

The concentration of atmospheric methane (CH₄) has more than doubled since pre-industrial times, and its radiative forcing is estimated to be the second largest after carbon dioxide (CO₂). However, despite the importance of atmospheric CH₄ in global warming, the significance of individual sources of CH₄ remains highly uncertain. Monsoon Asia accommodates about 90% of the world's rice fields, and they have a big influence on the global environment. In this study, we analyze model simulation using NICAM-TM-CH4 and satellite data (SCIAMACHY and TANSO-FTS) to understand CH₄ behaviour over Monsoon Asia.

Datasets

\leftrightarrow CH₄ concentration

Sensor	Satellite	Reference
SCIAMACHY	ENVISAT	Frankenberg et al.(2011)
Sensor	Satellite	Version

Emission inventory

Database	Emission category	Grid archived	Reference
Yan2009	Rice fields	0.5 [°] ×0.5 [°]	Yan et al.(2009)
GISS	All categories	1.0°×1.0°	Matthews et al.(1991

Satellite-derived indices

Terra

Database	Satellite	Grid archived	Reference
LSWC ^{*2}	Terra / Aqua	0.5 [°] ×0.5 [°]	Takeuchi and Gonzalez.(2009)

*1: National Institute for Environmental Studies *2: Land-surface water coverage

Fig. 1: Maps of 3-month averaged values of (a)SCIAMACHY, (b)LSWC, (c)NDVI.

(a)SCIAMACHY, (b)LSWC, (c)NDVI All data have been averaged for 6 years from 2003 through December 2008. The columns correspond to DJF, MAM, JJA, and SON, respectively.

DJF: from December to February MAM: from March to May JJA: from June to August SON: from September to November

*3: Normalized difference vegetation index

NICAM (Nonhydrostatic ICosahedral Atmospheric Model) - TM (Transport Model) Y. Niwa and R. Imasu

NICAM Model output

Scenarios of NICAM model run (after Master thesis of Takamizawa, Tokyo Univ, 2012)

Scenario name	Anthro- pogenic	Wetland	Biomass Burning	Rice	others
сті .5 deg. x	EDGAR3.2 2.5 deg, 4	GISS O layers, I	GISS monthly a	Yan2009 verage	GISS (termite)/ oceanic exchange/ mud volcanic
Aeteorolo	ogical cond	dition in 2	2007 (fixe	d)	emissions

Cluster analysis of the xCH₄ seasonality

In this study, we have observed the characteristics of seasonal variation in Asia by using the cluster analysis.

xCH₄ seasonal variation over typical rice paddies

We selected some sampling regions where the CH₄ emission values from rice fields

[Acknowledgments]

This research was supported by the Environment Research and Technology

Development Fund of the Ministry of the Environmental, Japan(A1202)

Hayashida et al., 2013, Remote Sensing of Environment 139,246-256.

Frankenberg, C., et al., 2011, Journal of Geophysical Research, 116, D04302.

Yan, X., et al., 2009, Global Biogeochem Cycles, 23, GB2002.

